

Preliminary results: Climate change likely to decrease icing in most regions of Canada that have wind turbines

Authors: Nigel Swytink-Binnema (nbinnema@nergica.com), Marilys Clément, Kossivi Tete

Context

2010s

Simulations

• Single model shown: CRCM5 (Canadian Regional Climate Model version 5)

Extra Charts and Figures

Average Wind Speed Change (2031-2060, RCP8.5)

• Macro and micro-scale analysis

• Model icing and power loss

(2031 - 2060)

(2061 - 2090)

historical reference period

• +/- 15 days icing

temperature changes

• In North: temperature

more often in icing

sun, so no melting

• East and West coasts:

above 0°C, so more

melting and ice fall

conditions, but no winter

temperature more often

 \rightarrow **GPEO**, Nergica's model

Ice Season Length: average first to last day of ice

- Separate into three distinct periods:
 - **1981–2010:** Historical reference period
 - 2031–2060: Horizon 1 (first repowering)
 - **2061–2090:** Horizon 2
 - Predict an overall decrease in length of

(1981-2010)

- driven by CNRM-CM5 (Centre National de Recherches Météorologiques).
- **RCP 8.5** (very high baseline emission scenario, and emissions continue to rise)

- Correct simulation incongruities:
 - Cloud water content
 - Wind speed extrapolation above terrain (ex. Rockies)
- Model energy production changes
- Analyse operable wind • Look at **multiple climate models/drivers** (other than CRCM5-CNRM) • Identify a consistent signal across many models

Average Annual Icing Change (2031-2060, RCP8.5)

- Complete uncertainty analysis
- Analyse individual sites (including direction shifts, economics)

- Half way through project
- Preliminary results suggest **decrease in icing** in most **regions with wind turbines** (southern Canada)
- Several **TB of data**! Many analyses possible – looking for **partners for follow-up** projects.
- The wind industry should keep an eye on the results of this study over the coming year

Project Partners

Project Funding Partners

Acknowledgments

Thanks to the team at Ouranos for their expertise in climatology: Hélène Côté, Dominique Paquin, Jacinthe Clavet-Gaumont.

CRCM5 simulations were produced by Ouranos on McGill University's supercomputer Guillimin, managed by Calcul Québec and Compute Canada.

Scan for more info and to download the poster

NERGICA

70, rue Bolduc, Gaspé, QC G4X 1G2 nergica.com

T +1 418 368-6162 | info@nergica.com

© 2019 Nergica – All rights reserved

**

